Notice: file_put_contents(): Write of 5807 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 9903 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1978 -
Telegram Group & Telegram Channel
bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.



group-telegram.com/sweet_homotopy/1978
Create:
Last Update:

bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1978

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. He adds: "Telegram has become my primary news source." Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from us


Telegram сладко стянул
FROM American