Telegram Group & Telegram Channel
Forwarded from Kali Novskaya
🌸Акселерация науки — вперед!🌸
#nlp #про_nlp #nlp_papers

Молчать про это невозможно — про автоматизацию и акселерацию науки с помощью ИИ-моделей. На этой неделе происходит сразу несколько интересных релизов:

🟣OpenAI выпустил SWElancer: новый бенчмарк для агентов в привязке к реальным заданиям с биржи фриланса (100 млрд сами себя не заработают). OpenAI продолжает работу по привязыванию оценки работы ИИ к монетарной ценности — в задачах вроде как и сложных, но все-таки не научных, а скорее экономически выгодных.

🟣Google выпустил Co-Scientist: ассистента для ученых на основе последней модели Gemini в применении к 3 биомедицинским задачам: поиск новых применений уже известных препаратов, предложение новых терапевтических подходов к лечению и выяснение механизмов, лежащих в основе устойчивости к противомикробным препаратам.

Как говорится, две большие разницы. Подход Google больше похож на мои тезисы из "как делать AGI аккуратно": методы машинного обучения уже давно проникли в различные научные области, автоматизируя отдельные части процесса. Уже нашлись приложения в таких науках, как физика, биология, химия, лингвистика, экономика, геологическое моделирование, эпидемиологическое моделирование, нейронауки.
ИИ легко применим в любой области науки, где имеется 2 необходимых условия для автоматизации: формальные модели и симуляции.

Вполне логично, что агенты могут успешно автоматизировать генерацию тем, и даже эксперименты, но не могут пока что полноценно генерировать научную новизну.
И если добавить в эту цепочку самого исследователя — то проблему автоматической валидации новизны можно и вовсе обойти!

Но это еще даже не все:
🟣Stanford/Harvard выпустили Popper — агента для автоматического фальсифицирования гипотез в биологии, экономике, социологии. Составные части научной акселерации скоро будут собраны почти все.

Судя по скорости, до конца этой недели.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ntstg/812
Create:
Last Update:

🌸Акселерация науки — вперед!🌸
#nlp #про_nlp #nlp_papers

Молчать про это невозможно — про автоматизацию и акселерацию науки с помощью ИИ-моделей. На этой неделе происходит сразу несколько интересных релизов:

🟣OpenAI выпустил SWElancer: новый бенчмарк для агентов в привязке к реальным заданиям с биржи фриланса (100 млрд сами себя не заработают). OpenAI продолжает работу по привязыванию оценки работы ИИ к монетарной ценности — в задачах вроде как и сложных, но все-таки не научных, а скорее экономически выгодных.

🟣Google выпустил Co-Scientist: ассистента для ученых на основе последней модели Gemini в применении к 3 биомедицинским задачам: поиск новых применений уже известных препаратов, предложение новых терапевтических подходов к лечению и выяснение механизмов, лежащих в основе устойчивости к противомикробным препаратам.

Как говорится, две большие разницы. Подход Google больше похож на мои тезисы из "как делать AGI аккуратно": методы машинного обучения уже давно проникли в различные научные области, автоматизируя отдельные части процесса. Уже нашлись приложения в таких науках, как физика, биология, химия, лингвистика, экономика, геологическое моделирование, эпидемиологическое моделирование, нейронауки.
ИИ легко применим в любой области науки, где имеется 2 необходимых условия для автоматизации: формальные модели и симуляции.

Вполне логично, что агенты могут успешно автоматизировать генерацию тем, и даже эксперименты, но не могут пока что полноценно генерировать научную новизну.
И если добавить в эту цепочку самого исследователя — то проблему автоматической валидации новизны можно и вовсе обойти!

Но это еще даже не все:
🟣Stanford/Harvard выпустили Popper — агента для автоматического фальсифицирования гипотез в биологии, экономике, социологии. Составные части научной акселерации скоро будут собраны почти все.

Судя по скорости, до конца этой недели.

BY Научно-техническая стратегия государства





Share with your friend now:
group-telegram.com/ntstg/812

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts.
from us


Telegram Научно-техническая стратегия государства
FROM American