Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/pragmaticml/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Pragmatic ML | Telegram Webview: pragmaticml/6 -
Telegram Group & Telegram Channel
Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.



group-telegram.com/pragmaticml/6
Create:
Last Update:

Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.

BY Pragmatic ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/pragmaticml/6

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today."
from us


Telegram Pragmatic ML
FROM American