Telegram Group & Telegram Channel
Оценка неопределенности, как быть?
Пост от читателя канала — Максима Кочурова, партнера PyMC Labs

Для построения надежных ML-систем нам нужно не только построить систему, предсказывающую интересующие нас переменные, но и оценить неопределенность предсказания. Эту проблему решают с помощью conformal prediction. Байесовские модели тоже оценивают неопределенность, но делают это немного иначе - различается сам подход к моделированию.

Conformal prediction позволяет получить оценку неопределенности в виде, например, интервалов, содержащих истинное значение с заданной вероятностью. Это model-agnostic подход, который может быть использован с любой моделью машинного обучения. Но эта оценка дается только для целевой переменной.

В противоположность этому байесовские методы явно описывают неопределенности процесса, которым генерируются данные. Мы получаем не только оценку неопределенности нашей целевой переменной, но и вероятностную оценку параметров модели. Когда это может быть важно?

В целом, можно разделить прикладные задачи датасаентиста по степени их «прозрачности»: white, grey, black. Вы наверняка слышали эти термины, между ними принципиальная разница в том, как вообще обычно формулируется постановка, и что в ней на самом деле важно. Условно, это качественная градация задач на “предсказывать” (black box), “предсказывать и делать интервенции”(causal grey box), “предсказывать, делать интервенции, находить неэффективности” (white box).

Если с black box задачами все понятно, то во многих чувствительных приложениях нам важен не только результат, но и параметры процесса. Когда нам нужно организовать валидацию модели экспертами, перенос знаний экспертов доменной области в модель, а так же валидацию экспертами закономерностей, выявленных моделями, нам нужны прозрачные модели, явно формулирующие предположения о процессе генерации данных.

Байесовские модели — самый очевидный выбор для построения таких white-box моделей.

В статье от нашего читателя Максима Кочурова из PyMC Labs выясняем что, как и зачем. Максим также прочитал прекрасный вводный доклад о байесовских методах в июне на секции Reliable ML на Data Fest 2023.

Ваш @Reliable ML

#tech #reliable_ml #bayes_in_ml



group-telegram.com/reliable_ml/182
Create:
Last Update:

Оценка неопределенности, как быть?
Пост от читателя канала — Максима Кочурова, партнера PyMC Labs

Для построения надежных ML-систем нам нужно не только построить систему, предсказывающую интересующие нас переменные, но и оценить неопределенность предсказания. Эту проблему решают с помощью conformal prediction. Байесовские модели тоже оценивают неопределенность, но делают это немного иначе - различается сам подход к моделированию.

Conformal prediction позволяет получить оценку неопределенности в виде, например, интервалов, содержащих истинное значение с заданной вероятностью. Это model-agnostic подход, который может быть использован с любой моделью машинного обучения. Но эта оценка дается только для целевой переменной.

В противоположность этому байесовские методы явно описывают неопределенности процесса, которым генерируются данные. Мы получаем не только оценку неопределенности нашей целевой переменной, но и вероятностную оценку параметров модели. Когда это может быть важно?

В целом, можно разделить прикладные задачи датасаентиста по степени их «прозрачности»: white, grey, black. Вы наверняка слышали эти термины, между ними принципиальная разница в том, как вообще обычно формулируется постановка, и что в ней на самом деле важно. Условно, это качественная градация задач на “предсказывать” (black box), “предсказывать и делать интервенции”(causal grey box), “предсказывать, делать интервенции, находить неэффективности” (white box).

Если с black box задачами все понятно, то во многих чувствительных приложениях нам важен не только результат, но и параметры процесса. Когда нам нужно организовать валидацию модели экспертами, перенос знаний экспертов доменной области в модель, а так же валидацию экспертами закономерностей, выявленных моделями, нам нужны прозрачные модели, явно формулирующие предположения о процессе генерации данных.

Байесовские модели — самый очевидный выбор для построения таких white-box моделей.

В статье от нашего читателя Максима Кочурова из PyMC Labs выясняем что, как и зачем. Максим также прочитал прекрасный вводный доклад о байесовских методах в июне на секции Reliable ML на Data Fest 2023.

Ваш @Reliable ML

#tech #reliable_ml #bayes_in_ml

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress.
from us


Telegram Reliable ML
FROM American