Telegram Group & Telegram Channel
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2498
Create:
Last Update:

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2498

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. READ MORE DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added.
from sa


Telegram эйай ньюз
FROM American