Telegram Group & Telegram Channel
Бенчмарк o1 pro - золотой стандарт

Итак, настало время протестировать o1 pro.

Но сначала disclaimer. Есть 4 разные версии o1. Не путайте их!

- o1-mini - самая маленькая и недорогая из Reasoning моделей. Она есть в ChatGPT и по API
- o1-preview - мощная версия, которая раньше была доступна в ChatGPT интерфейсе. Теперь ее оттуда убрали и заменили на pro. По API она еще доступна
- o1 - это то, что теперь заменяет o1-preview в чат интерфейсе. У этой модели ограничено время на размышления, так что она заметно глупее preview. По API эта модель не доступна.
- o1 pro - самая мощная модель, которой разрешили думать много и долго. Она есть в чат интерфейсе по Pro подписке за $200. По API ее пока нет.

Этот пост - исключительно про o1 pro. Модель я в порядке исключения тестировал вручную.

Я взял результаты бенчмарка o1-mini, и выбрал те задачи, в которых она ошибалась. o1 pro на голову выше mini, поэтому я допустил, что если mini не ошиблась, то и pro не ошибется. Таким образом мне нужно было прогнать не пару сотен задач, а в десять раз меньше.

Еще я отключил custom instructions по своевременному совету Игоря. Память у меня и так была отключена. Сконвертировал запросы к API в текстовый запрос и запустил вречную.

Тут я столкнулся с двумя граблями.

Во-первых, o1 pro сейчас встроена в Chat. Поэтому задачки, которые по API возвращали нормальный plain-text YAML, теперь стали возвращать красиво отформатированный markdown. Тут я исправлял формат вручную.

Во-вторых, я при задачах в API я few-shots всегда форматировал так:


System: Task explanation

User: sample request
Assistant: sample response

User: sample request
Assistant: sample response

User: real request


Но с чатом такое не прокатит, нужно формировать все в один текст. Более того, системный промпт нам не доступен в o1 моделях в принципе, чтобы случайно не утекло содержимое reasoning (ибо оно генерируется моделями без alignment). И вообще модель накручена защищать системный промпт и работать с пользователем в диалоге.

В итоге, o1 pro понижала приоритет инструкций, которые были помечены как System и начинала искать паттерны в запросах пользователя. Она их находила и приходила к неверным выводам, спотыкаясь на integrate. Поэтому задачу в текстовый UI я стал форматировать так:


# Task
Task explanation

## Example
User:
Assistant:

## Example
User:
Assistant:

# Request


Ну а что в итоге?

o1 pro подобралась вплотную к потолку моего продуктового бенчмарка, набрав 97. Причем нехватающие 3 балла можно даже было бы оспорить. В рамках бенчмарка она как золотой стандарт - дорога и идеальна.

Это очень хорошо. В разработке второй версии бенчмарка я смогу отталкиваться от этого потолка и формулировать задачи так, чтобы на самых сложных засыпалась даже o1 pro. Это позволит выстроить более плавную кривую оценок и сделать бенчмарк более репрезентативным для сложных кейсов LLM в бизнесе и продуктах.

Ваш, @llm_under_hood 🤗

PS: Для тех, кто видит бенчмарки впервые, подробнее про них написано тут.



group-telegram.com/seeallochnaya/2132
Create:
Last Update:

Бенчмарк o1 pro - золотой стандарт

Итак, настало время протестировать o1 pro.

Но сначала disclaimer. Есть 4 разные версии o1. Не путайте их!

- o1-mini - самая маленькая и недорогая из Reasoning моделей. Она есть в ChatGPT и по API
- o1-preview - мощная версия, которая раньше была доступна в ChatGPT интерфейсе. Теперь ее оттуда убрали и заменили на pro. По API она еще доступна
- o1 - это то, что теперь заменяет o1-preview в чат интерфейсе. У этой модели ограничено время на размышления, так что она заметно глупее preview. По API эта модель не доступна.
- o1 pro - самая мощная модель, которой разрешили думать много и долго. Она есть в чат интерфейсе по Pro подписке за $200. По API ее пока нет.

Этот пост - исключительно про o1 pro. Модель я в порядке исключения тестировал вручную.

Я взял результаты бенчмарка o1-mini, и выбрал те задачи, в которых она ошибалась. o1 pro на голову выше mini, поэтому я допустил, что если mini не ошиблась, то и pro не ошибется. Таким образом мне нужно было прогнать не пару сотен задач, а в десять раз меньше.

Еще я отключил custom instructions по своевременному совету Игоря. Память у меня и так была отключена. Сконвертировал запросы к API в текстовый запрос и запустил вречную.

Тут я столкнулся с двумя граблями.

Во-первых, o1 pro сейчас встроена в Chat. Поэтому задачки, которые по API возвращали нормальный plain-text YAML, теперь стали возвращать красиво отформатированный markdown. Тут я исправлял формат вручную.

Во-вторых, я при задачах в API я few-shots всегда форматировал так:


System: Task explanation

User: sample request
Assistant: sample response

User: sample request
Assistant: sample response

User: real request


Но с чатом такое не прокатит, нужно формировать все в один текст. Более того, системный промпт нам не доступен в o1 моделях в принципе, чтобы случайно не утекло содержимое reasoning (ибо оно генерируется моделями без alignment). И вообще модель накручена защищать системный промпт и работать с пользователем в диалоге.

В итоге, o1 pro понижала приоритет инструкций, которые были помечены как System и начинала искать паттерны в запросах пользователя. Она их находила и приходила к неверным выводам, спотыкаясь на integrate. Поэтому задачу в текстовый UI я стал форматировать так:


# Task
Task explanation

## Example
User:
Assistant:

## Example
User:
Assistant:

# Request


Ну а что в итоге?

o1 pro подобралась вплотную к потолку моего продуктового бенчмарка, набрав 97. Причем нехватающие 3 балла можно даже было бы оспорить. В рамках бенчмарка она как золотой стандарт - дорога и идеальна.

Это очень хорошо. В разработке второй версии бенчмарка я смогу отталкиваться от этого потолка и формулировать задачи так, чтобы на самых сложных засыпалась даже o1 pro. Это позволит выстроить более плавную кривую оценок и сделать бенчмарк более репрезентативным для сложных кейсов LLM в бизнесе и продуктах.

Ваш, @llm_under_hood 🤗

PS: Для тех, кто видит бенчмарки впервые, подробнее про них написано тут.

BY Сиолошная




Share with your friend now:
group-telegram.com/seeallochnaya/2132

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Founder Pavel Durov says tech is meant to set you free After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war.
from us


Telegram Сиолошная
FROM American