Telegram Group & Telegram Channel
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2498
Create:
Last Update:

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2498

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from sg


Telegram эйай ньюз
FROM American