Telegram Group & Telegram Channel
Мы с коллегами выложили на архив новый препринт:

https://arxiv.org/abs/2311.08349

Он снова посвящен детекции искусственных текстов, но в экстремально сложной постановке.
В качестве примеров здесь рассматриваются тексты из десяти предложений, где первые несколько предложений написаны человеком, а оставшиеся - сгенерированы ML моделью (OPT, CTRL, GPT-2, GPT-3.5, chatGPT etc). Метка же, которую должен угадать алгоритм детекции - это номер предложения, с которого начинается генерация. В некоторых примерах генерации нет вообще (они полностью написаны человеком), и такие примеры также надо распознать правильно.
В общем, задача крайне сложная - из-за короткой длины примеров, необходимости угадывать место начала генерации и разнообразия генераторов и тематик текста (нам ведь нужно, чтобы классификатор ещё и переносился между разными генераторами и темами, то есть был кросс-доменным).

Я её решение начала с того, что установила бейзлайны (дообученная RoBERTa и предсказание самого распространенного класса), а потом стала пытаться применить к ней наш метод из статьи "Intrinsic Dimension Estimation for Robust Detection of AI-Generated Texts" ( https://arxiv.org/abs/2306.04723 ), но прямолинейно "из коробки" он не сработал. В старой-то статье мы работали с бинарной классификацией и длинными текстами, а здесь совсем другая задача.
Я долго старалась, чтобы придумать какой-то новый способ применить концепцию внутренней размерности PH Dimension из старой статьи, и в итоге остановилась на конструкции, названной "PHD + time series". В ней по эмбеддингам текста в RoBERTa проходит скользящее окно, и размерность PHD считается внутри этого окна. Затем к ряду получившихся размерностей применяется SVM с Global Alignment Kernel ( https://dl.acm.org/doi/10.5555/3104482.3104599 ), который, в свою очередь, и предсказывает номер предложения, где начинается генерация. Этот метод действительно дал качество классификации лучше, чем примитивные предсказатели, но все ещё был намного хуже, чем RoBERTa classifier.

Тем временем, соавторы предложили другие способы работать с этой задачей, самые интересные из которых также вошли в статью.
Лучше всего сработал метод, основанный на перплексии, предложенный Таней Гайнцевой ( https://www.group-telegram.com/dl_stories ). In domain он оказался также слабее Роберты, но в cross domain на некоторых парах доменов оказался существенно лучше. Это интересно, потому что в бинарной постановке задачи (детекция полностью сгенерированных текстов) методы, основанные на прямолинейном применении перплексии обычно хуже, чем RoBERTa classifier. И это ещё раз демонстрирует то, как в разных постановках преимущество могут получать разные методы.

В процессе исследования, мы тщательно проанализировали используемый в статье датасет (он называется RoFT - Real or Fake text) и изучили причины того, почему разные детекторы работают на нем хорошо или плохо в кросс-доменной постановке.
Я уделила особое внимание тому, что предложения, сгенерированные разными моделями и написанные на разные тематики, имеют сильно отличающееся распределение длин. Я добавила в таблицу результатов dummy классификатор, который принимает на вход только длины предложений, не зная об их содержании, и показала, что даже такой классификатор может давать какой-то результат на in domain, при этом будучи совершенно бесполезным на cross-domain. Это наводит на мысль, что и другие классификаторы могут переобучаться на длины предложений и давать какой-то результат на in domain, не понимая, чем на самом деле сгенерированный текст отличается от настоящего.
Соавторы же, в свою очередь, добавили в статью анализ confusion matrices и другие интересные наблюдения.

Препринт является промежуточным результатом, который нужно будет ещё доработать и дополнить путем применения наших методов к другим датасетам (например, https://github.com/mbzuai-nlp/SemEval2024-task8 ).
Тем не менее, я очень рада тому, что удалось довести исследование до текущего этапа, и выражаю благодарность всем соавторам, которые согласились поучаствовать в исследовании. 😻

#объяснения_статей #детекция_искусственных_текстов
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1079
Create:
Last Update:

Мы с коллегами выложили на архив новый препринт:

https://arxiv.org/abs/2311.08349

Он снова посвящен детекции искусственных текстов, но в экстремально сложной постановке.
В качестве примеров здесь рассматриваются тексты из десяти предложений, где первые несколько предложений написаны человеком, а оставшиеся - сгенерированы ML моделью (OPT, CTRL, GPT-2, GPT-3.5, chatGPT etc). Метка же, которую должен угадать алгоритм детекции - это номер предложения, с которого начинается генерация. В некоторых примерах генерации нет вообще (они полностью написаны человеком), и такие примеры также надо распознать правильно.
В общем, задача крайне сложная - из-за короткой длины примеров, необходимости угадывать место начала генерации и разнообразия генераторов и тематик текста (нам ведь нужно, чтобы классификатор ещё и переносился между разными генераторами и темами, то есть был кросс-доменным).

Я её решение начала с того, что установила бейзлайны (дообученная RoBERTa и предсказание самого распространенного класса), а потом стала пытаться применить к ней наш метод из статьи "Intrinsic Dimension Estimation for Robust Detection of AI-Generated Texts" ( https://arxiv.org/abs/2306.04723 ), но прямолинейно "из коробки" он не сработал. В старой-то статье мы работали с бинарной классификацией и длинными текстами, а здесь совсем другая задача.
Я долго старалась, чтобы придумать какой-то новый способ применить концепцию внутренней размерности PH Dimension из старой статьи, и в итоге остановилась на конструкции, названной "PHD + time series". В ней по эмбеддингам текста в RoBERTa проходит скользящее окно, и размерность PHD считается внутри этого окна. Затем к ряду получившихся размерностей применяется SVM с Global Alignment Kernel ( https://dl.acm.org/doi/10.5555/3104482.3104599 ), который, в свою очередь, и предсказывает номер предложения, где начинается генерация. Этот метод действительно дал качество классификации лучше, чем примитивные предсказатели, но все ещё был намного хуже, чем RoBERTa classifier.

Тем временем, соавторы предложили другие способы работать с этой задачей, самые интересные из которых также вошли в статью.
Лучше всего сработал метод, основанный на перплексии, предложенный Таней Гайнцевой ( https://www.group-telegram.com/dl_stories ). In domain он оказался также слабее Роберты, но в cross domain на некоторых парах доменов оказался существенно лучше. Это интересно, потому что в бинарной постановке задачи (детекция полностью сгенерированных текстов) методы, основанные на прямолинейном применении перплексии обычно хуже, чем RoBERTa classifier. И это ещё раз демонстрирует то, как в разных постановках преимущество могут получать разные методы.

В процессе исследования, мы тщательно проанализировали используемый в статье датасет (он называется RoFT - Real or Fake text) и изучили причины того, почему разные детекторы работают на нем хорошо или плохо в кросс-доменной постановке.
Я уделила особое внимание тому, что предложения, сгенерированные разными моделями и написанные на разные тематики, имеют сильно отличающееся распределение длин. Я добавила в таблицу результатов dummy классификатор, который принимает на вход только длины предложений, не зная об их содержании, и показала, что даже такой классификатор может давать какой-то результат на in domain, при этом будучи совершенно бесполезным на cross-domain. Это наводит на мысль, что и другие классификаторы могут переобучаться на длины предложений и давать какой-то результат на in domain, не понимая, чем на самом деле сгенерированный текст отличается от настоящего.
Соавторы же, в свою очередь, добавили в статью анализ confusion matrices и другие интересные наблюдения.

Препринт является промежуточным результатом, который нужно будет ещё доработать и дополнить путем применения наших методов к другим датасетам (например, https://github.com/mbzuai-nlp/SemEval2024-task8 ).
Тем не менее, я очень рада тому, что удалось довести исследование до текущего этапа, и выражаю благодарность всем соавторам, которые согласились поучаствовать в исследовании. 😻

#объяснения_статей #детекция_искусственных_текстов

BY Техножрица 👩‍💻👩‍🏫👩‍🔧


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/tech_priestess/1079

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from us


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American