Telegram Group & Telegram Channel
Захожу после работы на ютуб, а там все сверкает, переливается, крутится, вертится... 😍 Что же это?! ..🤔
...ну конечно же, новое видео от 3blue1brown!

https://youtu.be/9-Jl0dxWQs8?si=VuVVJaYfPZYNxS9j

Стала смотреть, а видео-то не простое: к моему удивлению, оно оказалось посвящено интерпретации эмбеддингов с MLP-слоев трансформера 🥳

✍️ В первой части видео автор показывает, по каким примерно принципам факты могут извлекаться из этих MLP (multi-layer perceptron) слоев. Сама идея о том, что MLP слои трансформера в большей степени отвечают за "вспоминание" фактов, чем его MHA (multi-head attention) слои, известна в ресерч-сообществе довольно давно и берет свое начало из ряда статей, самая известная из которых эта - https://arxiv.org/abs/2202.05262 . Однако, я в первый раз вижу, чтобы эту тему раскрывали в ролике популярного формата!
✍️ Вторая часть раскрывает главный феномен, стоящий за серией постов (и статей) от Anthropic про features superposition ( https://transformer-circuits.pub/2022/toy_model/index.html ). Суть его в том, что в пространство высокой размерности, оказывается, можно напихать неожиданно большое количество векторов, "почти" перпендикулярных друг другу - намного больше, чем количество векторов в ортонормированном базисе этого пространства. Далее вспоминаем, что в пространстве эмбеддинга языковой модели вектора можно интерпретировать как некоторые концепции, а значит, в эмбеддинг можно напихать намного больше "почти" (но не совсем) независимых концепций, чем размерность этого эмбеддинга, получая эдакий раздутый псведо-"базис", по которому можно раскладывать другие вектора и изучать их семантику в соответствии с таким разложением. Это и называется features superposition в статьях Антропик.

Под самим же роликом, к еще большему моему удивлению, оказалась ссылка на туториал, который я сама сейчас ковыряю, чтобы разобраться с библиотекой TransformerLens:
https://arena3-chapter1-transformer-interp.streamlit.app/
и еще много других интересных ссылок. ☕️

#учебные_материалы #объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1728
Create:
Last Update:

Захожу после работы на ютуб, а там все сверкает, переливается, крутится, вертится... 😍 Что же это?! ..🤔
...ну конечно же, новое видео от 3blue1brown!

https://youtu.be/9-Jl0dxWQs8?si=VuVVJaYfPZYNxS9j

Стала смотреть, а видео-то не простое: к моему удивлению, оно оказалось посвящено интерпретации эмбеддингов с MLP-слоев трансформера 🥳

✍️ В первой части видео автор показывает, по каким примерно принципам факты могут извлекаться из этих MLP (multi-layer perceptron) слоев. Сама идея о том, что MLP слои трансформера в большей степени отвечают за "вспоминание" фактов, чем его MHA (multi-head attention) слои, известна в ресерч-сообществе довольно давно и берет свое начало из ряда статей, самая известная из которых эта - https://arxiv.org/abs/2202.05262 . Однако, я в первый раз вижу, чтобы эту тему раскрывали в ролике популярного формата!
✍️ Вторая часть раскрывает главный феномен, стоящий за серией постов (и статей) от Anthropic про features superposition ( https://transformer-circuits.pub/2022/toy_model/index.html ). Суть его в том, что в пространство высокой размерности, оказывается, можно напихать неожиданно большое количество векторов, "почти" перпендикулярных друг другу - намного больше, чем количество векторов в ортонормированном базисе этого пространства. Далее вспоминаем, что в пространстве эмбеддинга языковой модели вектора можно интерпретировать как некоторые концепции, а значит, в эмбеддинг можно напихать намного больше "почти" (но не совсем) независимых концепций, чем размерность этого эмбеддинга, получая эдакий раздутый псведо-"базис", по которому можно раскладывать другие вектора и изучать их семантику в соответствии с таким разложением. Это и называется features superposition в статьях Антропик.

Под самим же роликом, к еще большему моему удивлению, оказалась ссылка на туториал, который я сама сейчас ковыряю, чтобы разобраться с библиотекой TransformerLens:
https://arena3-chapter1-transformer-interp.streamlit.app/
и еще много других интересных ссылок. ☕️

#учебные_материалы #объяснения_статей

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/1728

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp.
from us


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American