Telegram Group & Telegram Channel
Yue-7b - генерируем песни на русском локально

Языки: английский, китайский, японский, корейский, русский (с акцентом).
генерация:
- по жанру + тексту песни
- по референсному аудио + жанру + тексту песни (почти кавер, позволяет задать нужное направление)
- в fp16 весит 12.5 GB. в формате nf4 занимает всего 6.5 GB vram!
- на русском лучше генерирует мужской голос. В женских - сильный акцент.

## Установка под Windows (без wsl)

Нужны
- питон 3.9 (3.8 не подойдет для flash-attention)
- torch 2.5.1 (flash-attention скомпилирован лишь для нескольких версий торча)
- cuda toolkit 12.4+

conda create -n yue python=3.9
conda activate yue
pip install torch==2.5.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

качаем файл flash_attn-2.7.1.post1+cu124torch2.5.1cxx11abiFALSE-cp39-cp39-win_amd64.whl
отсюда https://github.com/bdashore3/flash-attention/releases в папку, куда у вас идет установка
pip install flash_attn-2.7.1.post1+cu124torch2.5.1cxx11abiFALSE-cp39-cp39-win_amd64.whl

git lfs install
git clone https://github.com/multimodal-art-projection/YuE
cd YuE
pip install -r requirements.txt

cd inference/
git clone https://huggingface.co/m-a-p/xcodec_mini_infer


## Фиксим поддержку русского языка в UTF8
строку 120: with open(args.genre_txt) as f:
меняем на: with open(args.genre_txt, encoding="utf-8") as f:

строку 122: with open(args.lyrics_txt) as f:
меняем на: with open(args.lyrics_txt, encoding="utf-8") as f:


## Генерация
в папке inference создаем 2 файла genre.txt и lyrics.txt
в genre пишем: vocal punk rock electric guitar male vocal
Проверяем что кодировка в файлах UTF8
в lyrics пишем: 3-4 коротких сегмента: 2 куплета + 1 припев. При 2-х сегментах, у меня почему-то не запускался инференс. Пример:

Пластмассовый мир победил
...

[chorus]
Ооо - моя оборона
...

[verse]
...


Генерацию по промпту:
python infer.py --stage1_model m-a-p/YuE-s1-7B-anneal-en-cot --stage2_model m-a-p/YuE-s2-1B-general --genre_txt genre.txt --lyrics_txt lyrics.txt --run_n_segments 2 --stage2_batch_size 4 --output_dir ./output --cuda_idx 0 --max_new_tokens 1000

Генерация по промпту + референсному аудио:
python infer.py --stage1_model m-a-p/YuE-s1-7B-anneal-en-icl --stage2_model m-a-p/YuE-s2-1B-general --genre_txt genre.txt --lyrics_txt lyrics.txt --run_n_segments 2 --stage2_batch_size 4 --output_dir ./output --cuda_idx 0 --audio_prompt_path Egor_Letov_-_Moya_oborona.mp3 --max_new_tokens 1000


--run_n_segments - количество сегментов (куплетов + припевов)
--max_new_tokens - время песни в каждом сегменте. Длина песни если сегмента 2: 1000x2 = 20s, 3000 = 60s. Чем больше время, тем больше надо vram.

## Скорость и vram на 3090:
20s аудио - 12.5 GB (15 минут)
60s аудио - 15.6 GB (32 минуты)

## 8-12 GB VRAM и 3000 серия и nf4
Если у вас всего 8-12 GB попробуйте запустить модель в кванте nf4 (load_in_4bit=True). Особого падения качества пока не заметил. 10 секунд аудио будут занимать всего 6.6 GB VRAM. Запускать в gguf пока не имеет смысла, они будут автоматом конвертироваться в bf16, надо ждать нормальную реализацию гуфов для модели. На 2080 пока не запускается, flash attention похоже не поддерживается. Без него тоже можно, но будет медленнее и надо больше vram.

Для nf4 нужно установить:
pip install accelerate bitsandbytes
в infer.py измените строки 76-82 на:
model = AutoModelForCausalLM.from_pretrained(
stage1_model,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)

Скорость на 3060: 10s = 11 минут.

примеры на английском: https://map-yue.github.io/
потестить (русского нет):
- (квоты хватит на 10+10 секунд песни, не ставьте длину больше 10 секунд - упадет по ошибке): https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo
- (15 секунд, ждать очереди больше часа): https://huggingface.co/spaces/fffiloni/YuE



group-telegram.com/tensorbanana/1179
Create:
Last Update:

Yue-7b - генерируем песни на русском локально

Языки: английский, китайский, японский, корейский, русский (с акцентом).
генерация:
- по жанру + тексту песни
- по референсному аудио + жанру + тексту песни (почти кавер, позволяет задать нужное направление)
- в fp16 весит 12.5 GB. в формате nf4 занимает всего 6.5 GB vram!
- на русском лучше генерирует мужской голос. В женских - сильный акцент.

## Установка под Windows (без wsl)

Нужны
- питон 3.9 (3.8 не подойдет для flash-attention)
- torch 2.5.1 (flash-attention скомпилирован лишь для нескольких версий торча)
- cuda toolkit 12.4+

conda create -n yue python=3.9
conda activate yue
pip install torch==2.5.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

качаем файл flash_attn-2.7.1.post1+cu124torch2.5.1cxx11abiFALSE-cp39-cp39-win_amd64.whl
отсюда https://github.com/bdashore3/flash-attention/releases в папку, куда у вас идет установка
pip install flash_attn-2.7.1.post1+cu124torch2.5.1cxx11abiFALSE-cp39-cp39-win_amd64.whl

git lfs install
git clone https://github.com/multimodal-art-projection/YuE
cd YuE
pip install -r requirements.txt

cd inference/
git clone https://huggingface.co/m-a-p/xcodec_mini_infer


## Фиксим поддержку русского языка в UTF8
строку 120: with open(args.genre_txt) as f:
меняем на: with open(args.genre_txt, encoding="utf-8") as f:

строку 122: with open(args.lyrics_txt) as f:
меняем на: with open(args.lyrics_txt, encoding="utf-8") as f:


## Генерация
в папке inference создаем 2 файла genre.txt и lyrics.txt
в genre пишем: vocal punk rock electric guitar male vocal
Проверяем что кодировка в файлах UTF8
в lyrics пишем: 3-4 коротких сегмента: 2 куплета + 1 припев. При 2-х сегментах, у меня почему-то не запускался инференс. Пример:

Пластмассовый мир победил
...

[chorus]
Ооо - моя оборона
...

[verse]
...


Генерацию по промпту:
python infer.py --stage1_model m-a-p/YuE-s1-7B-anneal-en-cot --stage2_model m-a-p/YuE-s2-1B-general --genre_txt genre.txt --lyrics_txt lyrics.txt --run_n_segments 2 --stage2_batch_size 4 --output_dir ./output --cuda_idx 0 --max_new_tokens 1000

Генерация по промпту + референсному аудио:
python infer.py --stage1_model m-a-p/YuE-s1-7B-anneal-en-icl --stage2_model m-a-p/YuE-s2-1B-general --genre_txt genre.txt --lyrics_txt lyrics.txt --run_n_segments 2 --stage2_batch_size 4 --output_dir ./output --cuda_idx 0 --audio_prompt_path Egor_Letov_-_Moya_oborona.mp3 --max_new_tokens 1000


--run_n_segments - количество сегментов (куплетов + припевов)
--max_new_tokens - время песни в каждом сегменте. Длина песни если сегмента 2: 1000x2 = 20s, 3000 = 60s. Чем больше время, тем больше надо vram.

## Скорость и vram на 3090:
20s аудио - 12.5 GB (15 минут)
60s аудио - 15.6 GB (32 минуты)

## 8-12 GB VRAM и 3000 серия и nf4
Если у вас всего 8-12 GB попробуйте запустить модель в кванте nf4 (load_in_4bit=True). Особого падения качества пока не заметил. 10 секунд аудио будут занимать всего 6.6 GB VRAM. Запускать в gguf пока не имеет смысла, они будут автоматом конвертироваться в bf16, надо ждать нормальную реализацию гуфов для модели. На 2080 пока не запускается, flash attention похоже не поддерживается. Без него тоже можно, но будет медленнее и надо больше vram.

Для nf4 нужно установить:
pip install accelerate bitsandbytes
в infer.py измените строки 76-82 на:
model = AutoModelForCausalLM.from_pretrained(
stage1_model,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)

Скорость на 3060: 10s = 11 минут.

примеры на английском: https://map-yue.github.io/
потестить (русского нет):
- (квоты хватит на 10+10 секунд песни, не ставьте длину больше 10 секунд - упадет по ошибке): https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo
- (15 секунд, ждать очереди больше часа): https://huggingface.co/spaces/fffiloni/YuE

BY Tensor Banana


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/tensorbanana/1179

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world.
from us


Telegram Tensor Banana
FROM American