Telegram Group & Telegram Channel
Свободные диаграммы симплициальных множеств и гомотопические копределы.

Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.

Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств
F : D —> sSets.
Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора)
B_{n,d} ⊆ F(d)_n,
которые замкнуты относительно вырождений
s_i( B_{n,d} ) ⊆ B_{n+1,d},
и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм
f : d' —> d
и единственный элемент базиса b∈ B_{n,d'} такой, что
F(f)(b)=x.

Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).

Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.

Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества
S' <—< S >—> S'',
то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств
S^0 >—> S^1 >—> S^2 —> ...,
то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.

Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми.
... >—> S^{-1}>—> S^0 >—> S^1 >—> ...
Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки
S_n = *.
Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество
... —> (n-2) —> (n-1) —> (n),
составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения
S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.

Список литературы:

[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets."
(Определение свободной диаграммы §2.4.
Утверждение про гомотопические копределы §4.2.)

[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces."
(Прежде всего §2.4)

[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization"
(Аппендикс "Homotopy colimits and fibrations").



group-telegram.com/math_dump_of_sepa/246
Create:
Last Update:

Свободные диаграммы симплициальных множеств и гомотопические копределы.

Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.

Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств
F : D —> sSets.
Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора)
B_{n,d} ⊆ F(d)_n,
которые замкнуты относительно вырождений
s_i( B_{n,d} ) ⊆ B_{n+1,d},
и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм
f : d' —> d
и единственный элемент базиса b∈ B_{n,d'} такой, что
F(f)(b)=x.

Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).

Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.

Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества
S' <—< S >—> S'',
то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств
S^0 >—> S^1 >—> S^2 —> ...,
то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.

Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми.
... >—> S^{-1}>—> S^0 >—> S^1 >—> ...
Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки
S_n = *.
Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество
... —> (n-2) —> (n-1) —> (n),
составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения
S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.

Список литературы:

[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets."
(Определение свободной диаграммы §2.4.
Утверждение про гомотопические копределы §4.2.)

[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces."
(Прежде всего §2.4)

[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization"
(Аппендикс "Homotopy colimits and fibrations").

BY Математическая свалка Сепы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_dump_of_sepa/246

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said.
from tw


Telegram Математическая свалка Сепы
FROM American