Telegram Group & Telegram Channel
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code



group-telegram.com/rizzearch/779
Create:
Last Update:

Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code

BY rizzearch










Share with your friend now:
group-telegram.com/rizzearch/779

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from tw


Telegram rizzearch
FROM American