Telegram Group & Telegram Channel
bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.



group-telegram.com/sweet_homotopy/1978
Create:
Last Update:

bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1978

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from ua


Telegram сладко стянул
FROM American