Telegram Group & Telegram Channel
Захожу после работы на ютуб, а там все сверкает, переливается, крутится, вертится... 😍 Что же это?! ..🤔
...ну конечно же, новое видео от 3blue1brown!

https://youtu.be/9-Jl0dxWQs8?si=VuVVJaYfPZYNxS9j

Стала смотреть, а видео-то не простое: к моему удивлению, оно оказалось посвящено интерпретации эмбеддингов с MLP-слоев трансформера 🥳

✍️ В первой части видео автор показывает, по каким примерно принципам факты могут извлекаться из этих MLP (multi-layer perceptron) слоев. Сама идея о том, что MLP слои трансформера в большей степени отвечают за "вспоминание" фактов, чем его MHA (multi-head attention) слои, известна в ресерч-сообществе довольно давно и берет свое начало из ряда статей, самая известная из которых эта - https://arxiv.org/abs/2202.05262 . Однако, я в первый раз вижу, чтобы эту тему раскрывали в ролике популярного формата!
✍️ Вторая часть раскрывает главный феномен, стоящий за серией постов (и статей) от Anthropic про features superposition ( https://transformer-circuits.pub/2022/toy_model/index.html ). Суть его в том, что в пространство высокой размерности, оказывается, можно напихать неожиданно большое количество векторов, "почти" перпендикулярных друг другу - намного больше, чем количество векторов в ортонормированном базисе этого пространства. Далее вспоминаем, что в пространстве эмбеддинга языковой модели вектора можно интерпретировать как некоторые концепции, а значит, в эмбеддинг можно напихать намного больше "почти" (но не совсем) независимых концепций, чем размерность этого эмбеддинга, получая эдакий раздутый псведо-"базис", по которому можно раскладывать другие вектора и изучать их семантику в соответствии с таким разложением. Это и называется features superposition в статьях Антропик.

Под самим же роликом, к еще большему моему удивлению, оказалась ссылка на туториал, который я сама сейчас ковыряю, чтобы разобраться с библиотекой TransformerLens:
https://arena3-chapter1-transformer-interp.streamlit.app/
и еще много других интересных ссылок. ☕️

#учебные_материалы #объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1728
Create:
Last Update:

Захожу после работы на ютуб, а там все сверкает, переливается, крутится, вертится... 😍 Что же это?! ..🤔
...ну конечно же, новое видео от 3blue1brown!

https://youtu.be/9-Jl0dxWQs8?si=VuVVJaYfPZYNxS9j

Стала смотреть, а видео-то не простое: к моему удивлению, оно оказалось посвящено интерпретации эмбеддингов с MLP-слоев трансформера 🥳

✍️ В первой части видео автор показывает, по каким примерно принципам факты могут извлекаться из этих MLP (multi-layer perceptron) слоев. Сама идея о том, что MLP слои трансформера в большей степени отвечают за "вспоминание" фактов, чем его MHA (multi-head attention) слои, известна в ресерч-сообществе довольно давно и берет свое начало из ряда статей, самая известная из которых эта - https://arxiv.org/abs/2202.05262 . Однако, я в первый раз вижу, чтобы эту тему раскрывали в ролике популярного формата!
✍️ Вторая часть раскрывает главный феномен, стоящий за серией постов (и статей) от Anthropic про features superposition ( https://transformer-circuits.pub/2022/toy_model/index.html ). Суть его в том, что в пространство высокой размерности, оказывается, можно напихать неожиданно большое количество векторов, "почти" перпендикулярных друг другу - намного больше, чем количество векторов в ортонормированном базисе этого пространства. Далее вспоминаем, что в пространстве эмбеддинга языковой модели вектора можно интерпретировать как некоторые концепции, а значит, в эмбеддинг можно напихать намного больше "почти" (но не совсем) независимых концепций, чем размерность этого эмбеддинга, получая эдакий раздутый псведо-"базис", по которому можно раскладывать другие вектора и изучать их семантику в соответствии с таким разложением. Это и называется features superposition в статьях Антропик.

Под самим же роликом, к еще большему моему удивлению, оказалась ссылка на туториал, который я сама сейчас ковыряю, чтобы разобраться с библиотекой TransformerLens:
https://arena3-chapter1-transformer-interp.streamlit.app/
и еще много других интересных ссылок. ☕️

#учебные_материалы #объяснения_статей

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/1728

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights.
from ua


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American