Telegram Group Search
🙏 Разработки грантополучателей на IV Конгрессе молодых ученых

В период с 27 по 29 ноября в «Научной гостиной» можно было увидеть промежуточные результаты работы грантополучателей РНФ.

Здесь свои проекты представили молодые ученые — Александр Гостев, Елена Назарова, Андрей Блинов и Ольга Парфенова.

Среди разработок:
🔬 Программно-аппаратный комплекс для УЗИ-датчика, который может изменить подход к диагностике
🌿 Оптически активные индикаторы для умной упаковки, способные отслеживать свежесть продуктов
☀️ Миниатюрные солнечные батареи нового поколения
🥛 И даже кисломолочные напитки с витаминами и антиоксидантами

Эти проекты — результат фундаментальных исследований, которые уже сегодня находят воплощение в реальных приборах. С дальнейшей доработкой они могут быть внедрены в промышленность и повседневную жизнь.

Все проекты грантополучателей Фонда доступны на сайте в разделе «Поиск проектов».

➡️ Подробнее о проектах, представленных на Конгрессе — в наших карточках

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧲Ученые из Института общей и неорганической химии имени Н.С. Курнакова (РАН) совместно с коллегами из ФИАН и Курчатовского института разработали магниточувствительные материалы на основе арсенида кадмия с добавлением хрома. Эти материалы перспективны для создания устройств магнитной памяти, сенсоров и микроэлектроники нового поколения.

➡️Ход исследования
Ученые синтезировали материалы, добавив хром в арсенид кадмия в концентрациях от 1 до 6% и сплавив их при температуре 740°C. Анализ химического состава и микроструктуры показал, что в результате образовались три фазы:
🟠Арсенид кадмия — 96,4% сплава.
🟠Арсенид хрома — 1,6%.
🟠Кадмий — 2%, который формирует отдельные светлые вкрапления.

Микроскопический анализ подтвердил, что предел «растворимости» кадмия в материале крайне низок — менее 0,1%.

➡️ Основные результаты
🟠Точная настройка свойств. Состав и структура позволяют регулировать магнитные характеристики для различных приложений.
🟠Прогнозируемые фазы. Данные о фазовых равновесиях помогут создавать материалы с заданными свойствами.
🟠Практическая применимость. Материалы перспективны для магнитной памяти, сенсоров и микроэлектронных устройств.

Полученные результаты открывают путь к разработке энергоэффективных устройств, работающих на основе спин-управляемых структур.

Исследование опубликовано в журнале Vacuum.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 Хотите улучшить свои навыки работы с научным оборудованием и стать настоящим экспертом в своем деле? Тогда проект «ЛабИнфо» — для вас!

На IV Конгрессе молодых ученых представили видеогид «ЛабИнфо», который помогает молодым исследователям изучить базовые и продвинутые приборы, используемые в лабораториях. Проект создан РНФ и Сколтехом при участии вузов-партнеров — СПбГУ, УрФУ, РХТУ, ТГУ и ЮФУ. В ноябре «ЛабИнфо» вошел в инициативу Десятилетия науки и технологий «Решения и сервисы для профессионального сообщества».

🪅Что такое «ЛабИнфо»?
🪅База из более 40 видеороликов о лабораторном оборудовании и ПО, которая регулярно пополняется
🪅Простые и наглядные объяснения работы ключевых приборов
🪅Регулярная обратная связь и ответы на ваши вопросы

🪅Что дает этот проект?
🔘Быстрый старт для новичков в науке.
🔘Готовые инструкции по работе с оборудованием, которое есть почти в каждой лаборатории.

💙 Все видеоуроки по работе с лабораторным оборудованием доступны в сообществе проекта «ЛабИнфо» в ВКонтакте: https://vk.com/labinfo

Присоединяйтесь!

📲 Если вы хотите делиться своими знаниями и принять участие в записи видеоинструкции, отправьте запрос по адресу [email protected] с темой письма «ЛабИнфо» или в сообщениях группы в ВКонтакте

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
💬 Интервью с Андреем Блиновым на IV Конгрессе молодых ученых

В завершающий день Конгресса в «Научной гостиной» Андрей Блинов рассказал о системе грантовой поддержки Фонда, особенностях конкурсных процедур, Школе РНФ, а также представил возможности для молодых исследователей.

💙 Запись интервью доступна в группе РНФ в ВКонтакте по ссылке

Тайм-коды 🔽
0:25 - Увеличение размера гранта РНФ
2:20 - Конкурсы для молодых ученых: перспективы
5:00 - Участие молодых ученых в конкурсах прикладных проектов РНФ
10:20 - О пути к гранту РНФ
13:40 - Школа РНФ: зачем она нужна и насколько эффективна
20:40 - Популяризация: зачем ученым представлять свои результаты обществу
22:40 - Презентация юбилейной книги РНФ

🎙️Интервью взяла Ирина Алексеенко, к.б.н., заведующая группой генной иммуноонкотерапии ИБХ РАН, заместитель директора Московского центра инновационных технологий в здравоохранении

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
🛰️ Ученые из Института металлургии и материаловедения имени А.А. Байкова (РАН) совместно с коллегами из МГУ, Сеченовского университета и других научных центров впервые синтезировали 3D-аналоги костной ткани в условиях микрогравитации на борту Международной космической станции. Эти материалы перспективны для регенерации костей как на Земле, так и в длительных космических миссиях.

➡️ Ход исследования
Для синтеза материалов использовался магнитный биоассемблер — устройство, позволяющее формировать ткани под действием магнитных полей.

Процесс проходил в два этапа:
1️⃣ Подготовка образцов:
🟣В биоассемблер загрузили раствор фосфата кальция — биосовместимого вещества, химически близкого к костной ткани.
🟣Эксперименты проводились параллельно на МКС (микрогравитация) и на Земле (гравитация присутствует).

2️⃣ Синтез ткани:
🟣В обоих случаях за 48 часов сформировались 3D-аналоги костной тканиразмером ~5 мм.
🟣Образцы доставили на Землю для анализа.

Анализ структуры показал, что микрогравитация существенно улучшает свойства материала: кристаллы фосфата кальция на МКС росли равномерно, образуя упорядоченную структуру.

➡️ Основные результаты
🟣Упорядоченная структура. Образцы с МКС имеют более однородную кристаллическую структуру, что способствует лучшей адгезии клеток.
🟣Ускоренное заживление. Доклинические испытания на крысах показали, что «космические» материалы стимулируют более активное восстановление костной ткани по сравнению с земными аналогами.
🟣Перспективы применения. Разработанные материалы могут использоваться как в медицине на Земле (хирургия, стоматология), так и для лечения травм в космосе.

✔️ Полученные результаты подтверждают преимущества микрогравитации для создания биоматериалов нового поколения.

Исследование опубликовано в журнале Biomedical Technology.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Уважаемые грантополучатели!

Информируем, что подача научных отчетов доступна только в новой ИАС: ias.rscf.ru

🌐Для входа в систему рекомендуем использовать Яндекс-браузер

Согласно ГК РФ, последний день представления отчета — 16 декабря 2024 года
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🙏 С 27 по 29 ноября в Научно-технологическом университете «Сириус» проходил ежегодный Конгресс молодых ученых — ключевое событие 2024 года программы Десятилетия науки и технологий. В рамках конгресса была организована Школа РНФ.

За три дня более тысячи молодых ученых встретились с руководством Фонда на семинарах и сессиях, узнали об инструментах продвижения научных результатов и механизмах экспертизы проектов, рассказали о своих исследованиях, а также представили собственные разработки в выставочном пространстве. 

📌Собрали для вас ссылки на записи прошедших мероприятий Деловой программы Школы РНФ:
🟣Семинар «Грантовая поддержка РНФ»
🟣Семинар «Научная экспертиза проектов»
🟣Семинар «Механика отбора и поддержки прикладных проектов в РНФ»
🟣Мастер-класс «Научная коммуникация»
🟣Открытый микрофон с заместителем генерального директора РНФ Андреем Блиновым

Видеозаписи также доступны на сайте Конгресса

⬇️ Об итогах Школы РНФ на IV Конгрессе молодых ученых читайте на нашем сайте

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
🐟 Ученые из Донского государственного технического университета и Южного федерального университета выяснили, как добавки на основе бактерий Bacillus могут улучшить здоровье и рост клариевого сома. Результаты исследования открывают новые возможности для повышения продуктивности аквакультуры.

➡️Ход исследования
В качестве пробиотиков исследователи использовали три штамма бактерий: Bacillus subtilis R1, Bacillus subtilis R4 и Bacillus velezensis R5, изолированных из кишечника здоровых клариевых сомов. Эти бактерии обрабатывали соевыми бобами, а затем измельченные бобы добавляли в рацион рыб.

Эксперимент проводился на 50 молодых сомах (25 — в контрольной группе и 25 — с пробиотиками). Рыб взвешивали с интервалом в 12 дней на протяжении почти двух месяцев.

➡️ Основные результаты
🟠Увеличение массы. Рыбы, получавшие пробиотики, показали прирост массы на 25–29% по сравнению с контрольной группой. Наибольший эффект наблюдался у рыб, кормленных добавками с Bacillus velezensis R5 — их масса увеличилась на 29%.
🟠Иммунный ответ. Пробиотики активировали гены, отвечающие за устойчивость к стрессу, в тканях рыбы. Активность этих генов увеличивалась в мозге, печени, жабрах и мышцах в 2–46 раз в зависимости от органа и штамма бактерий. Это свидетельствует о значительном иммуностимулирующем эффекте.

Применение пробиотиков может ускорить рост клариевого сома, повысить его устойчивость к болезням и стрессу, снизить смертность и улучшить показатели аквакультуры в целом. Это поможет снизить издержки на выращивание рыбы и повысить эффективность производства.

Исследование опубликовано в журнале Fishes.

📰 Подробности — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Публикуем 💥💥💥💥 «Открывай с РНФ»

Финальный выпуск 2024 года посвящен итогам Десятилетия с момента основания Фонда

📚 Из дайджеста вы узнаете:

🟠о последних результатах научных исследований грантополучателей Фонда: костном цементе, хорошо заметном на снимках томографов, методике датировки артефактов с помощью угля и многих других;
🟠о ключевых итогах Десятилетия РНФ: Всероссийской конференции «Научные мосты», масштабном лектории «10 лет с РНФ», экспозиции Фонда на Фестивале НАУКА 0+, Школе РНФ и других событиях из жизни Фонда.

➡️В рубрике «Интервью» к.б.н., руководитель группы генной иммуноонкотерапии ИБХ РАН, заместитель директора Московского центра инновационных технологий в здравоохранении Ирина Алексеенко рассказывает о разработанном препарате от рака и необходимости поддержки прикладных исследований.

➡️Рубрика «Фоторепортаж» познакомит читателей с четырьмя лабораториями Института космических исследований (ИКИ) РАН, где рождаются передовые технологии, и с учеными, для которых космос — не просто объект исследований, а вызов, вдохновение и страсть.

📎Скачать веб-версию: https://clck.ru/3FBh3G

Приятного чтения! ❤️

#новости_фонда #дайджестРНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎨 Вновь рассказываем об эстетической стороне исследований в фотопроекте «Цвета науки»

🌌 Сегодняшний цвет — «галактический зеленый», на который нас вдохновило исследование ученых из Института астрономии РАН и САО РАН.

🟢В работе была изучена пространственная структура трех областей ионизованного водорода в спиральном рукаве Персея.

💨В одном из них были найдены свидетельства звездного ветра. На небе эти области видны как светлые туманности разнообразной формы.

🟢Астрономы не могут поставить над своими объектами эксперименты — изучая межзвездную среду в картинной плоскости неба, они вынуждены искать способы восстановления трехмерной структуры межзвездного вещества.

🟢В будущем авторы создадут атлас ярких ионизованных областей северного неба, а также оценят вклад звездного ветра в процесс образования туманностей.

🟢Исследование, поддержанное РНФ, поможет изучить многообразие проявлений межзвездной среды, влияющих на образование новых светил.

📸 Автор фото: Мария Кирсанова

#цвета_науки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
💊 Химики из Института химии растворов имени Г.А. Крестова РАН нашли способ повысить растворимость лекарства для снижения давления телмисартана в 20 раз.

Это открытие может снизить риск побочных эффектов и сделать лечение сердечно-сосудистых заболеваний более эффективным.

➡️ Ход исследования
Телмисартан плохо растворяется в воде, что усложняет его всасывание и требует высоких доз. Чтобы решить эту проблему, ученые использовали циклодекстрин — молекулу, образующую кольцо с полостью, куда поместили молекулу телмисартана.

Были применены два метода:
💗Перемол телмисартана с циклодекстрином.
💗Растворение в этаноле с последующей сушкой.

Растворимость полученных комплексов проверяли в условиях, имитирующих плазму крови, при температуре от 20 до 40°C.

➡️Основные результаты
💙Повышение растворимости. Комплекс телмисартана с циклодекстрином растворяется в 20 раз лучше чистого препарата при температуре тела человека.
💙Ускоренное действие. Благодаря лучшей растворимости лекарство быстрее всасывается, что сокращает время до начала терапевтического эффекта.
💙Метод перемола. Этот способ оказался более эффективным, обеспечив лучшее взаимодействие между молекулами лекарства и циклодекстрином.

Новая форма телмисартана позволяет использовать более низкие дозы, снижая риск таких побочных эффектов, как инфекции, проблемы с почками и отеки. Методы, примененные в исследовании, можно адаптировать для других плохо растворимых лекарств, что открывает перспективы для создания более безопасных и доступных препаратов.

Исследование опубликовано в журнале Colloids and Surfaces A: Physicochemical and Engineering Aspects

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
О самых интересных открытиях российских ученых за неделю по версии Минобрнауки России, РАН и РНФ

Биотехнологии. Впервые в мире в условиях космической микрогравитации на борту российского сегмента МКС создали трехмерные аналоги костной ткани. Оказалось, что микрогравитация положительно влияет на свойства материала: по сравнению с земными, образцы с МКС имеют более упорядоченную кристаллическую структуру.

Химия. Исследователи из ИОНХ РАН и ИТЭБ РАН впервые получили неорганические аналоги природных энзимов на основе наночастиц диоксида церия и яблочной кислоты. Полученные соединения открывают новые возможности для разработки биосовместимых неорганических наноматериалов с регулируемыми про- и антиоксидантными свойствами.

Астрономия. Ученые ГЕОХИ РАН предложили новый способ удаленных поисков воды на безатмосферных телах Солнечной системы. В качестве маркеров наличия или отсутствия воды они использовали инфракрасные спектры отражения оливина — одного из породообразующих минералов каменных планет.

Биология. Сотрудники Института биологии КарНЦ РАН исследовали влияние освещения на урожайность и пищевую ценность сельскохозяйственных культур. Авторы установили, что удлиненные циклы «свет/темнота» повышают эффективность использования света по сравнению с обычным фотопериодом. Это поможет снизить себестоимость сельхозпродукции.

Биология. Ученые из Института молекулярной биологии им. В.А. Энгельгардта РАН с коллегами описали новый механизм запуска программируемой клеточной гибели. Они выяснили, что инициировать апоптоз может белок р62, который отвечает за разрушение и удаление «лишних» белков из клетки.

Физика. Самую большую в мире камеру для исследования взрыва на источнике синхротронного излучения изготовили для экспериментальной станции «Быстропротекающие процессы» ЦКП «Сибирский кольцевой источник фотонов» (СКИФ) — проекта класса «мегасайенс» с синхротроном поколения 4+, который строится в новосибирском наукограде Кольцово.
💎 Начинаем новую неделю с результатов исследования волоконных лазеров

Ученые из МФТИ, ИОФ РАН и МГТУ им. Н.Э. Баумана разработали способ упорядоченной самосборки углеродных нанотрубок, который повышает эффективность лазеров для диагностики заболеваний.

Эта технология увеличивает мощность ультракоротких импульсов на 30% и снижает шумы в лазерном излучении на 25–40%.

➡️Ход исследования
Современные лазеры, используемые для получения высокоточных изображений тканей и органов, сталкиваются с проблемой шумов, что усложняет диагностику. Чтобы решить эту задачу, ученые разработали метод самосборки углеродных нанотрубок:

🟠Нанотрубки смешали с холатом натрия (солью желчной кислоты) и подвергли ультразвуковой обработке.
🟠После медленного высушивания в течение 2–3 суток нанотрубки упорядоченно самособрались в пленки.
🟠Контрольные образцы с хаотичным расположением нанотрубок использовались для сравнительных экспериментов.

Созданные пленки были интегрированы в лазеры и протестированы как фильтры излучения.

➡️ Основные результаты
🔘Эффективность излучения. Лазеры с упорядоченными нанотрубками преобразуют энергию в ультракороткие импульсы на 30% лучше.
🔘Стабильность импульсов. Шумы в излучении уменьшились на 25–40%, что позволило получить более четкие и точные изображения.
🔘Долговечность. Пленки не теряли своих свойств даже после многократного использования.

Новый метод поможет улучшить качество волоконных лазеров и расширить их применение в науке, промышленности и медицине, где необходимы высокая точность рабочих параметров, надежность эксплуатации и стабильность основных характеристик излучения.

Результаты исследования опубликованы в журнале Carbon

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
🔬Ученые из Южного федерального университета, ФИЦ химической физики и медицинской химии РАН, а также Северо-Кавказского федерального университета синтезировали 12 новых спиропиранов — органических соединений с регулируемыми свойствами свечения и токсичности.

Это открытие открывает путь к более точной диагностике и эффективному лечению заболеваний.

➡️ Ход исследования
Спиропираны — это молекулы, которые излучают свет в ближнем инфракрасном диапазоне (700+ нм), что делает их идеальными для работы в глубине живых тканей.

В ходе исследования ученые:
🔘Синтезировали 12 новых молекул спиропиранов с разными заместителями и анионами (йодиды, перхлораты, тетрафторбораты).
🔘Изучили их оптические свойства, установив, что все соединения флуоресцируют в диапазоне биологического «окна» (600-1000 нм).
🔘Провели тесты на токсичность, исследуя влияние на бактерии Escherichia coli и Acinetobacter calcoaceticus

➡️ Основные результаты
🔘Флуоресценция. Наибольшую яркость показали фторзамещенные соединения.
🔘Токсичность. Йодидные спиропираны подавляют рост бактериальных клеток и биопленок, что делает их перспективными для борьбы с инфекциями и раковыми клетками.
🔘Безопасность. Перхлоратные и тетрафторборатные соединения подходят для окрашивания живых тканей без повреждений.

Новый подход позволяет управлять свойствами красителей, адаптируя их для конкретных задач: от визуализации биологических процессов до уничтожения патогенов.

Результаты опубликованы в журнале ChemBioChem.

📰 Подробнее — на сайте РНФ

#новостинауки_РНФ
Please open Telegram to view this post
VIEW IN TELEGRAM
✍️Церемония подписания соглашения о сотрудничестве между Российским научным фондом и Фондом Росконгресс

Сегодня в 15:00 состоится Церемония подписания соглашения о сотрудничестве между Российским научным фондом и Фондом Росконгресс.

Соглашение направлено на расширение сотрудничества в части экспертного сопровождения мероприятий, популяризации научных результатов ведущих отечественных ученых и разработчиков, а также их привлечения к участию в ключевых событиях и встречах.

Участники:
▪️помощник Президента Российской Федерации, председатель Попечительского совета РНФ Андрей Фурсенко;
▪️председатель правления, директор Фонда Росконгресс Александр Стуглев;
▪️генеральный директор Российского научного фонда Владимир Беспалов.

▶️ Посмотреть прямую трансляцию можно по ссылке

#новости_фонда
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/01/02 08:32:30
Back to Top
HTML Embed Code: