Telegram Group & Telegram Channel
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2498
Create:
Last Update:

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2498

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from us


Telegram эйай ньюз
FROM American