В этом году с гуманоидными роботами будет жара. Авторы предлагают обучать языковую модель на сенсомоторных траекториях с роботов или из YouTube видео людей где траектории получены с помощью обратной кинематики (использовали PHALP)
Обучались на: 1. Траекториях робота который управляется классическим алгоритмом 1. Траекториях из симуляции с RL-policy 1. Человеческих motion-capture 1. YouTube видео с людьми к которым применяли обратную кинематику чтобы получить траекторию
Плюсы подхода к этому через языковое моделирование: можно обучаться на данных у которых отсутствуют некоторые модальности. Например на YouTube видосах у вас нету actions, есть только траектория. Вы просто маскируете эти отсутствующие токены и языковая модель просто делает своё дело.
Модель обученная всего на 27 часах данных может управлять роботом в городе без какого-либо дообучения 🔥
Также показали наметки scaling law, но самая большая моделька (всего 8M параметров lol) уже отходит от scaling law, так что возможно данных надо сильно больше.
В этом году с гуманоидными роботами будет жара. Авторы предлагают обучать языковую модель на сенсомоторных траекториях с роботов или из YouTube видео людей где траектории получены с помощью обратной кинематики (использовали PHALP)
Обучались на: 1. Траекториях робота который управляется классическим алгоритмом 1. Траекториях из симуляции с RL-policy 1. Человеческих motion-capture 1. YouTube видео с людьми к которым применяли обратную кинематику чтобы получить траекторию
Плюсы подхода к этому через языковое моделирование: можно обучаться на данных у которых отсутствуют некоторые модальности. Например на YouTube видосах у вас нету actions, есть только траектория. Вы просто маскируете эти отсутствующие токены и языковая модель просто делает своё дело.
Модель обученная всего на 27 часах данных может управлять роботом в городе без какого-либо дообучения 🔥
Также показали наметки scaling law, но самая большая моделька (всего 8M параметров lol) уже отходит от scaling law, так что возможно данных надо сильно больше.
Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from us