Notice: file_put_contents(): Write of 1710 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 9902 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1978 -
Telegram Group & Telegram Channel
bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.



group-telegram.com/sweet_homotopy/1978
Create:
Last Update:

bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1978

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said.
from us


Telegram сладко стянул
FROM American