Telegram Group & Telegram Channel
Очень полезная, хотя и непростая для чтения как любой научный текст, статья в Nature посвящена, на первый взгляд, довольно узкой задаче: использованию больших языковых моделей в процессах поиска и открытия новых в чем-либо полезных материалов.
В начальных разделах статьи указывается, что технологии обработки естественного языка, позволили, наконец, содержательно обрабатывать весь массив когда-либо опубликованных работ по теме, извлекая из них данные, которые формируют большие обучающие выборки.
В разделе про LLM содержится важное замечание: Recently, LLMs have shown their ability in learning universal language representations, text understanding and generation. В итоге в конкретном исследуемом случае оказывается, что Leveraging semantic textual similarity, new materials with similar properties can be identified without human labeling or supervision.
Познавательно выглядит сравнение уже давно использовавшихся пайплайнов открытия новых материалов с использованием методов обработки естественного языка и новых возможностей, появившихся благодаря LLM. Описано, как и почему необходим файнтюнинг готовых моделей.
Речь и здесь уже идет о создании автономных агентов, способных целиком самостоятельно планировать и проводить исследования, причем — снова как люди — эти агенты по ходу дела обучаются и самосовершентвуются: In-context learning allows an AI agent to accumulate experience and evolve so that its actions become increasingly consistent, logical, and effective over time.
При внимательном чтении статья позволяет заглянуть в будущее научных исследований и понять логику, по которой это будущее создается. А еще — почувствовать объем нерешенных проблем, гарантирующих, что в обозримом будущем тем людям, кто создает автономный пайплайн научных открытий, безработица не грозит:)
А для особо любознательных открывается, насколько же наивна, безосновательна и слаба критика ИИ в научных исследованиях со стороны якобы экспертов. Им следует поизучать матчасть. Можно с этой статьи и начать.
https://www.nature.com/articles/s41524-025-01554-0



group-telegram.com/techsparks/4953
Create:
Last Update:

Очень полезная, хотя и непростая для чтения как любой научный текст, статья в Nature посвящена, на первый взгляд, довольно узкой задаче: использованию больших языковых моделей в процессах поиска и открытия новых в чем-либо полезных материалов.
В начальных разделах статьи указывается, что технологии обработки естественного языка, позволили, наконец, содержательно обрабатывать весь массив когда-либо опубликованных работ по теме, извлекая из них данные, которые формируют большие обучающие выборки.
В разделе про LLM содержится важное замечание: Recently, LLMs have shown their ability in learning universal language representations, text understanding and generation. В итоге в конкретном исследуемом случае оказывается, что Leveraging semantic textual similarity, new materials with similar properties can be identified without human labeling or supervision.
Познавательно выглядит сравнение уже давно использовавшихся пайплайнов открытия новых материалов с использованием методов обработки естественного языка и новых возможностей, появившихся благодаря LLM. Описано, как и почему необходим файнтюнинг готовых моделей.
Речь и здесь уже идет о создании автономных агентов, способных целиком самостоятельно планировать и проводить исследования, причем — снова как люди — эти агенты по ходу дела обучаются и самосовершентвуются: In-context learning allows an AI agent to accumulate experience and evolve so that its actions become increasingly consistent, logical, and effective over time.
При внимательном чтении статья позволяет заглянуть в будущее научных исследований и понять логику, по которой это будущее создается. А еще — почувствовать объем нерешенных проблем, гарантирующих, что в обозримом будущем тем людям, кто создает автономный пайплайн научных открытий, безработица не грозит:)
А для особо любознательных открывается, насколько же наивна, безосновательна и слаба критика ИИ в научных исследованиях со стороны якобы экспертов. Им следует поизучать матчасть. Можно с этой статьи и начать.
https://www.nature.com/articles/s41524-025-01554-0

BY TechSparks




Share with your friend now:
group-telegram.com/techsparks/4953

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from us


Telegram TechSparks
FROM American