Telegram Group & Telegram Channel
Scientists at Yale University have developed BrainLM, the first foundation model for analyzing functional MRI brain recordings.

Here's what makes it revolutionary:

- Trained on 6,700 hours of brain activity recordings
- Uses self-supervised masked-prediction training
- Processes data from 77,298 fMRI samples
- Analyzes 424 brain regions simultaneously

Capabilities:

- Accurately predicts clinical variables like age, anxiety, and PTSD
- Forecasts future brain states
- Identifies functional networks without supervision
- Generates interpretable representations of brain activity patterns

What Sets It Apart:

- Generalizes well to new patients and external datasets
- Outperforms baseline models in clinical predictions
- Serves as a powerful "lens" for analyzing massive fMRI repositories
- Creates meaningful insights about brain organization

Potential Applications:
- Non-invasive assessment of cognitive health
- Early detection of psychiatric disorders
- Research tool for understanding brain dynamics
- Biomarker discovery for mental health conditions

Technical Implementation:

- Based on Transformer architecture
- Trained on UK Biobank and Human Connectome Project data
- Uses advanced preprocessing and brain parcellation techniques
- Employs state-of-the-art deep learning methods



group-telegram.com/bci_ru/4083
Create:
Last Update:

Scientists at Yale University have developed BrainLM, the first foundation model for analyzing functional MRI brain recordings.

Here's what makes it revolutionary:

- Trained on 6,700 hours of brain activity recordings
- Uses self-supervised masked-prediction training
- Processes data from 77,298 fMRI samples
- Analyzes 424 brain regions simultaneously

Capabilities:

- Accurately predicts clinical variables like age, anxiety, and PTSD
- Forecasts future brain states
- Identifies functional networks without supervision
- Generates interpretable representations of brain activity patterns

What Sets It Apart:

- Generalizes well to new patients and external datasets
- Outperforms baseline models in clinical predictions
- Serves as a powerful "lens" for analyzing massive fMRI repositories
- Creates meaningful insights about brain organization

Potential Applications:
- Non-invasive assessment of cognitive health
- Early detection of psychiatric disorders
- Research tool for understanding brain dynamics
- Biomarker discovery for mental health conditions

Technical Implementation:

- Based on Transformer architecture
- Trained on UK Biobank and Human Connectome Project data
- Uses advanced preprocessing and brain parcellation techniques
- Employs state-of-the-art deep learning methods

BY Нейроинтерфейсы


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/bci_ru/4083

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from vn


Telegram Нейроинтерфейсы
FROM American