Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/pragmaticml/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Pragmatic ML | Telegram Webview: pragmaticml/6 -
Telegram Group & Telegram Channel
Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.



group-telegram.com/pragmaticml/6
Create:
Last Update:

Кстати, что такое RAG?
В последнее время напридумывали множество новых терминов, под которыми скрываются давно придуманные истории.
Собственно, RAG — Retrieval Augmented Generation. Если говорить простым языком, это попытка предоставить внешние знания, например документацию по какому-то продукту или весь уголовный кодекс РФ, напрямую в LLM. Зачем? Чтобы удерживать ее внимание в рамках нужной нам задачи. По сути, мы говорим: генерируй ответ только на основе предоставленной тебе информации.
Сразу представляется волшебный мир будущего:
Пользователь — Как мне правильно оформить декларацию для налогового вычета?
Сервис — Чтобы корректно оформить налоговую декларацию по форме 3-НДФЛ, вам нужно перечислить все ваши доходы от различных источников с указанием типов деятельности.
Любая базовая LLM модель скорее всего выкинет странный ответ, не только неправильный, но и возможно вредный. Вот поэтому надо ограничивать генерацию источниками информации
Есть разные подходы, как это делать:
– Взять уже обученную модель, для каждого входного запроса предварительно искать в нашем корпусе кусочки текста, похожие на запрос пользователя, и хитро подставлять их в конечный инпут модели;
– Дообучить базовую модель на нашем корпусе, надеясь, что она все запомнит и не будет галлюцинировать;
– Взять уже обученную модель, для пользовательского запроса искать похожие кусочки текста, потом той же моделью одним промптом просить перевести в единый укороченный контекст, затем подставить этот контекст в следующий промпт для получения финального ответа;
– Дообучить модель, используя промпты как в первом подходе.


В 99% случаев, когда вам продают RAG, это будет первый подход. По сути, зумеры прикрутили к промпту быстрый поиск ближайших соседей, и вот как раз для этого нужны векторные базы данных. Что-то похожее делали 10-20 лет назад разрабы из Гугла/Бинга/Яндекса/etc. Раньше сильно беспокоились за качество выдачи, за точность ответа, но в 2022 OpenAI показали нам, что на это можно забить, продукт важнее, чем неправильные ответы.

BY Pragmatic ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/pragmaticml/6

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from vn


Telegram Pragmatic ML
FROM American