Telegram Group & Telegram Channel
Бенчмарк o1 pro - золотой стандарт

Итак, настало время протестировать o1 pro.

Но сначала disclaimer. Есть 4 разные версии o1. Не путайте их!

- o1-mini - самая маленькая и недорогая из Reasoning моделей. Она есть в ChatGPT и по API
- o1-preview - мощная версия, которая раньше была доступна в ChatGPT интерфейсе. Теперь ее оттуда убрали и заменили на pro. По API она еще доступна
- o1 - это то, что теперь заменяет o1-preview в чат интерфейсе. У этой модели ограничено время на размышления, так что она заметно глупее preview. По API эта модель не доступна.
- o1 pro - самая мощная модель, которой разрешили думать много и долго. Она есть в чат интерфейсе по Pro подписке за $200. По API ее пока нет.

Этот пост - исключительно про o1 pro. Модель я в порядке исключения тестировал вручную.

Я взял результаты бенчмарка o1-mini, и выбрал те задачи, в которых она ошибалась. o1 pro на голову выше mini, поэтому я допустил, что если mini не ошиблась, то и pro не ошибется. Таким образом мне нужно было прогнать не пару сотен задач, а в десять раз меньше.

Еще я отключил custom instructions по своевременному совету Игоря. Память у меня и так была отключена. Сконвертировал запросы к API в текстовый запрос и запустил вречную.

Тут я столкнулся с двумя граблями.

Во-первых, o1 pro сейчас встроена в Chat. Поэтому задачки, которые по API возвращали нормальный plain-text YAML, теперь стали возвращать красиво отформатированный markdown. Тут я исправлял формат вручную.

Во-вторых, я при задачах в API я few-shots всегда форматировал так:


System: Task explanation

User: sample request
Assistant: sample response

User: sample request
Assistant: sample response

User: real request


Но с чатом такое не прокатит, нужно формировать все в один текст. Более того, системный промпт нам не доступен в o1 моделях в принципе, чтобы случайно не утекло содержимое reasoning (ибо оно генерируется моделями без alignment). И вообще модель накручена защищать системный промпт и работать с пользователем в диалоге.

В итоге, o1 pro понижала приоритет инструкций, которые были помечены как System и начинала искать паттерны в запросах пользователя. Она их находила и приходила к неверным выводам, спотыкаясь на integrate. Поэтому задачу в текстовый UI я стал форматировать так:


# Task
Task explanation

## Example
User:
Assistant:

## Example
User:
Assistant:

# Request


Ну а что в итоге?

o1 pro подобралась вплотную к потолку моего продуктового бенчмарка, набрав 97. Причем нехватающие 3 балла можно даже было бы оспорить. В рамках бенчмарка она как золотой стандарт - дорога и идеальна.

Это очень хорошо. В разработке второй версии бенчмарка я смогу отталкиваться от этого потолка и формулировать задачи так, чтобы на самых сложных засыпалась даже o1 pro. Это позволит выстроить более плавную кривую оценок и сделать бенчмарк более репрезентативным для сложных кейсов LLM в бизнесе и продуктах.

Ваш, @llm_under_hood 🤗

PS: Для тех, кто видит бенчмарки впервые, подробнее про них написано тут.



group-telegram.com/seeallochnaya/2132
Create:
Last Update:

Бенчмарк o1 pro - золотой стандарт

Итак, настало время протестировать o1 pro.

Но сначала disclaimer. Есть 4 разные версии o1. Не путайте их!

- o1-mini - самая маленькая и недорогая из Reasoning моделей. Она есть в ChatGPT и по API
- o1-preview - мощная версия, которая раньше была доступна в ChatGPT интерфейсе. Теперь ее оттуда убрали и заменили на pro. По API она еще доступна
- o1 - это то, что теперь заменяет o1-preview в чат интерфейсе. У этой модели ограничено время на размышления, так что она заметно глупее preview. По API эта модель не доступна.
- o1 pro - самая мощная модель, которой разрешили думать много и долго. Она есть в чат интерфейсе по Pro подписке за $200. По API ее пока нет.

Этот пост - исключительно про o1 pro. Модель я в порядке исключения тестировал вручную.

Я взял результаты бенчмарка o1-mini, и выбрал те задачи, в которых она ошибалась. o1 pro на голову выше mini, поэтому я допустил, что если mini не ошиблась, то и pro не ошибется. Таким образом мне нужно было прогнать не пару сотен задач, а в десять раз меньше.

Еще я отключил custom instructions по своевременному совету Игоря. Память у меня и так была отключена. Сконвертировал запросы к API в текстовый запрос и запустил вречную.

Тут я столкнулся с двумя граблями.

Во-первых, o1 pro сейчас встроена в Chat. Поэтому задачки, которые по API возвращали нормальный plain-text YAML, теперь стали возвращать красиво отформатированный markdown. Тут я исправлял формат вручную.

Во-вторых, я при задачах в API я few-shots всегда форматировал так:


System: Task explanation

User: sample request
Assistant: sample response

User: sample request
Assistant: sample response

User: real request


Но с чатом такое не прокатит, нужно формировать все в один текст. Более того, системный промпт нам не доступен в o1 моделях в принципе, чтобы случайно не утекло содержимое reasoning (ибо оно генерируется моделями без alignment). И вообще модель накручена защищать системный промпт и работать с пользователем в диалоге.

В итоге, o1 pro понижала приоритет инструкций, которые были помечены как System и начинала искать паттерны в запросах пользователя. Она их находила и приходила к неверным выводам, спотыкаясь на integrate. Поэтому задачу в текстовый UI я стал форматировать так:


# Task
Task explanation

## Example
User:
Assistant:

## Example
User:
Assistant:

# Request


Ну а что в итоге?

o1 pro подобралась вплотную к потолку моего продуктового бенчмарка, набрав 97. Причем нехватающие 3 балла можно даже было бы оспорить. В рамках бенчмарка она как золотой стандарт - дорога и идеальна.

Это очень хорошо. В разработке второй версии бенчмарка я смогу отталкиваться от этого потолка и формулировать задачи так, чтобы на самых сложных засыпалась даже o1 pro. Это позволит выстроить более плавную кривую оценок и сделать бенчмарк более репрезентативным для сложных кейсов LLM в бизнесе и продуктах.

Ваш, @llm_under_hood 🤗

PS: Для тех, кто видит бенчмарки впервые, подробнее про них написано тут.

BY Сиолошная




Share with your friend now:
group-telegram.com/seeallochnaya/2132

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Some privacy experts say Telegram is not secure enough Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from vn


Telegram Сиолошная
FROM American